Illinois River Instream Flow Pilot Study Public/Stakeholder Meeting

January 21, 2016 Municipal Armory Tahlequah, Oklahoma

US Army Corps of Engineers

Housekeeping items

CarolloSmoothTemplateWithLogo.ppt

Agenda for Tonight's Discussion

Welcome and Introductions Derek Smithee, Division Chief, OWRB

Recap of January 2015 Public/Stakeholder Meeting John Rehring, Carollo Engineers

Technical Presentation: "Updates on the Illinois River Instream Flow Pilot Study and Next Steps" *Forrest Olson, CH2M*

Public comment / Questions and Answers

Next steps

OCWP "Big 8" Priority Recommendations

ISF Advisory Group: Process for Assessing Instream Flow

Address the legal and policy questions.

Study other mechanisms for protecting instream flows.

Develop a draft methodology for instream flow studies in Oklahoma.

Illinois River Instream Flow Pilot Study

Conduct a study on the economic impacts of instream flows in Oklahoma.

5. Perform an instream flow pilot study in a scenic river.

Preserve the Instream Flow Workgroup.

Focus of Tonight's Discussion

 Instream (or environmental) flows are those necessary to provide for a healthy ecosystem and support waterrelated recreation (such as fishing, hunting, swimming, and boating) as well as tourism.

Goals for Tonight's Meeting

Recap feedback from 2015 public meeting Learn about Illinois River resource values

Learn about 2015 Instream Flow fieldwork Ask questions and look ahead to next steps

www.owrb.ok.gov/ISF

Derek.Smithee@owrb.ok.gov

Derek Smithee (405) 530-8800

Examples of feedback shared at the first ISF Pilot Study stakeholder meeting (1/22/15)

- Instream Recreation (boating, rafting)
- Related Recreation (hunting, camping, birding)
- Wetlands and Oxbows
- Stream/groundwater interactions
- Flow patterns
- Variability beyond historical data
- Potential maximum flows
- Cherokee Nation involvement
- Summer critical low-flows
- Changing erosion and channel dynamics
- Impact of recreation on landowners
 - Tenkiller allocation impacts
 - Interstate Compact conflicts

Touch

_

Keeping

- Questions about the field work?
- Questions about the technical studies and how that fits into the overall Instream Flow Pilot Study?
- Discussion of other river/stream uses on the Upper Illinois River and tributaries above Tenkiller
- Any other Instream flow questions?

Illinois River Instream Flow Pilot Study Public/Stakeholder Meeting

January 21, 2015 Municipal Armory Tahlequah, Oklahoma

US Army Corps of Engineers

Instream Flow Assessment of the Illinois River, OK Study Update and Next Steps

Presented to Public Stakeholder Meeting in Tahlequah, OK

Presented by Forrest Olson, CH2M HILL

January 21, 2016

What is an instream flow?

OWRB working definition of instream flow:

"Flows necessary to provide for a healthy <u>ecosystem</u> and support water-related recreation (such as fishing, hunting, swimming and boating) as well as tourism."

What are instream resources?

• Fisheries, wildlife, water quality, recreation, aesthetics, and the <u>ecological processes</u> that support these resources.

Primary Study Goals:

- Gain a better understanding of the implications of a process to deal with instream flow issues consistent with the overall goal of managing water resources in Oklahoma for multiple uses. The study would help define a conceptual framework and study process that could be used statewide.
- Develop seasonal instream flow recommendations for the Illinois River including Barren Fork and Flint creeks.

Note: This study is **not** being done in response to a proposed water development project.

Illinois River Average Monthly Flows

Average Annual Flows for the Illinois River near Gore

Illinois River December 27, 2015

Peak Flow Recurrence Intervals

		Flow (cfs)		
Peak Flow Return Period (Year)	Probability (%)	Illinois River near Tahlequah	Illinois River near Watts	Barren Fork at Eldon
2	50	19,535	18,868	16,250
5	20	38,289	33,947	29,836
10	10	53,919	45,185	37,328
25	4	77,173	60,390	44,675
50	2	96,925	72,233	48,789
100	1	118,643	84,362	51,962

Average Annual Surface Water Usage (acre-feet) in the Upper Illinois River Basin (OK) above and including Barren Fork

Water Use	Total
Irrigation	1,301.4
Agriculture	0
Public Supply	10,751.4
Rec, Fish, & Wildlife	0
Commercial	0
Industrial	0
Mining	0
Other	35.1
Total	12,087.9

Groundwater Usage

Deep Bedrock Aquifer	3,900 acre-feet (water right)	Little effect on streamflows
Shallow Alluvial Aquifer	1,050 acre feet (est. usage)	Direct but delayed effect on stream

Alluvial Groundwater use is equivalent to 1.5 cfs, which is 0.11 % of basin yield

Water Use Summary:

- Surface water use in Oklahoma portion of Illinois River above Barren Fork is only 1.3 % of the average annual basin yield
- 2. Most water use is for public supply mostly Tahlequah
- 3. Basin water use in Arkansas is similar to Oklahoma in quantity and use category
- 4. White River water for Fayetteville area municipal use augments flows in Illinois River
- 5. Flow augmentation from White River may totally offset other surface water withdrawals in both states on annual average basis
- 6. Ground water use has minimal effect on streamflows

- Basin's major water quality concern is nutrient loading, primarily phosphorus
- Phosphorus affects the Illinois River and Lake Tenkiller
- Phosphorus loading is trending downward in Illinois River and Barren Fork Creek, not in Flint Creek

Fisheries

- 1. Highly diverse fish community of >72 species
- 2. Most fish species are native to the basin
- 3. Smallmouth bass is the most sought-after game fish
- 4. The Neosho smallmouth bass and sunfish are of high conservation value
- 5. No fish species are listed as federal or state threatened or endangered

Recreational Use

- Annual visitation ~400,000 to Scenic section
- Approximately 25 Commercial Floatation Device Operators
- Annual floaters (canoe, raft, kayak) ~100,000
- Annual recreational economic value (above Tenkiller)
 ~ \$12 million
- Fishing is a popular activity, primarily for bass and sunfish. No estimates of angler use or catch for Illinois River (some for Barren Fk)

Illinois River Monthly Float Users, Average Annual for 2003-2008

Month	Commercial	Private	Total
January	1	35	36
February	2	34	36
March	110	19	129
April	348	81	429
Мау	9,938	411	10,349
June	22,734	681	23,415
July	37,441	1,094	38,535
August	24,540	804	25,344
September	8,657	400	9,057
October	878	93	971
November	76	24	100
December	6	48	54
Total	104,731	3,724	108,455

Flow Ranges for Recreational Floating (Tahlequah Gage) (source: OSRC)

Preferred range	400 – 1,200 cfs
Minimum for canoeing & kayaking	150 cfs
Minimum for rafting	250 cfs
Maximum for general safety	1,200 cfs
Maximum for experienced boaters	4,000 cfs

Secondary Channels

Ratio of secondary channel length to the main channel length in the Illinois River between Watts and Tahlequah, Oklahoma.

River Reach	Watts to Flint Creek	Flint Creek to Peavine	Peavine to Tahlequah	Total
River Reach Length (mi)	13.3	16.3	22.9	53
Secondary Channel Length (mi)	5.3	6.3	18.3	30.5
Ratio of 2 nd ary channel to main channel length	44.4 %	38.7%	80.0%	57.5%

Importance of Secondary Channels

- Rearing and refuge habitat for fish
- Support of many wildlife species that don't tend to use the main channel
- Water quality (clarity and temperature)
- Floodwater relief
- Help govern the size and shape of the main channel

How to Protect Secondary Channels:

- Preserve bank-full/channel maintenance flows (frequency and magnitude)
- Typically equates to the 1.5- or 2-year recurrence flow
- Approximately 15,000 20,000 cfs for Illinois River at Tahlequah

Fish Habitat Modeling

- Simple explanation of model
- Study sites (map with transects)
- Photos
- Example results (Barren Fork)

Cross-section: T7 Pool: Manning Ns applied IFG4 method

Cross-section: T7 Pool: Manning Ns applied IFG4 method

Velocity (ft/s)

Lower Flint Creek

Flint Creek Study Transect

Lower Illinois River

Upper Illinois River Bedrock Pool Transect

Example (Barren Fork) of Fish Habitat Modeling Results

Implication of recent flood on study

- Fish habitat model extrapolation limited to < 1,000 cfs for Illinois River, <150 cfs for Flint Creek
- Upper Illinois River site above Flint Creek insufficient data; site washed out.

- Finish habitat modeling
- Complete Technical Report (late spring 2016)
- Final public/stakeholder meeting to present results of the technical studies

Future Work.

- Results will be provided to the Instream Flow Advisory Group
- Begin policy dialogue to determine how these flows fit into upper Illinois River water quantity management
- Assess applicability to other streams in Oklahoma